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For nonlinear nonconvex control systems in finite dimensional state spaces we
approximate measurable controls by Lipschitz controls. We give explicit
approximation rates. It turns out that the corresponding trajectories converge
uniformly on bounded time intervals and that the approximation is of order
O(M&1�2), as M � �, where M>0 is the Lipschitz constant of the Lipschitz
controls. � 2000 Academic Press
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1. INTRODUCTION

We consider ordinary differential equations with time-varying vector
fields. At any time we can choose a particular vector field within a
prescribed class.

If the time-dependence of the vector fields is measurable, the set of
possible trajectories is richer than in the case that only Lipschitz continuous
changes of the vector fields are allowed. However, as the Lipschitz constant
is growing, the latter set of trajectories approximates the former one. In this
paper we investigate the order of approximation that can be expected. This
is done in the context of nonlinear nonconvex control systems

x* (t)= f (x(t), u(t)), x(0)=x, u(t) # 0 (1)

in the Euclidean space Rn. The time-varying parameter t [ u(t) determines
the time-dependence of the vector fields. We call it a control.

As usual, a solution t [ x(t)=x(t; x, u( } )) is an absolutely continuous
function with x(0)=x such that the differential equation of (1) is satisfied
for (Lebesgue) almost all times t # [0, �).

We define two families of controls:

U :=[u( } ): [0, �) � 0 : u( } ) (Lebesgue) measurable]
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and, for a Lipschitz constant M>0,

UM :=[u( } ): [0, �) � 0 : &u(t)&u(s)&�M &t&s& for all t, s # [0, �)].

It is well known that, in a weak sense, �M>0 UM is dense in U and that
any trajectory produced by a measurable control u( } ) # U can be approxi-
mated by trajectories produced by Lipschitz controls uM( } ) # �M>0 UM ,
provided that the control range 0 is connected.

We are interested in explicit approximation rates and show that, for
given initial value x # Rn and time interval [0, H], the estimate

sup
u( } ) # U

( inf
w( } ) # UM

( max
t # [0, H]

&x(t, x, u( } ))&x(t, x, w( } ))&))=O(M&1�2),

as M � �, is valid, see Theorem 2.4. For a certain class of nonlinear
convex systems the order can be improved to O(M&1), as M � �, see
Theorem 4.4.

The approximation of measurable controls by more regular controls is
not only of theoretical but also of practical interest. Basically two classes
of regular controls usually are considered. Firstly, the class of piecewise
continuous controls and within this group the piecewise constant controls.
Secondly, the class of Lipschitz controls. Whereas the approximation order
for the former class has been investigated in a variety of articles, see
[4, 5, 6, 8, 9], the latter class seems to lack a comparable investigation.

The question of approximating with Lipschitz controls is of some impor-
tance for practical problems, since for most mechanical systems measurable
controls, or even piecewise constant controls, cannot be realized, due to the
inertness of the controlling mechanism, see [3].

Furthermore, Lipschitz controls play a prominent part in game theory,
where they are used to characterize the existence of a value. However, in
this context one usually works with compactness arguments in order to
achieve a convergence of the trajectories, see [2].

The paper is organized as follows. In the second section we give the
setting and state and prove the main result, Theorem 2.4. The third section
consists of an example showing the optimality of the achieved approxima-
tion order. Finally, in the last section we give some additional conditions,
under which an improved approximation order can be achieved.

2. THE NONLINEAR NONCONVEX CASE

The setting is as follows.

v The control range 0 is a compact metric space.
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v The vector fields x [ f (x, |) are uniformly Lipschitz continuous on
Rn with Lipschitz constant L�0.

v The map (x, |) [ f (x, |) is continuous on Rn_0.

v For any time H>0 and any initial value x # Rn there is a constant
P�0 such that & f ( y, |)&�P for all y # Y :=[x(t; x, u( } )): t # [0, H],
u( } ) # U] and all | # 0.

These requirements ensure the unique existence of a trajectory for any
initial value x # Rn and any measurable control function u( } ) # U, see [7].
The last point is redundand, since for any initial state x # Rn and any inter-
val [0, H] the set of reachable states Y is bounded in Rn (by the continuity
properties of the vector fields together with the compactness of the control
range). Nevertheless, we find it more convenient to prescribe such a bound
P�0 explicitly.

For | # 0 we set

U|
M :=[u( } ) # UM : u(0)=|].

The following assumption is essential.

Assumption 2.1.

v There is a time T�0 such that for all |1 , |2 # 0 the inclusion

U|2
1 /[|( } ) # U1 : w( } )=u(T+ } ) for some u( } ) # U|1

1 ]

is valid.

Obviously, this implies connectedness of the control range 0, in the
sense that any two points |1 , |2 # 0 can be connected by a continuous
path within 0. Accordingly, we obtain for all M>0:

U|2
M /{w( } ) # UM : w( } )=u \ T

M
+ } + for some u( } ) # U|1

M = .

For the right-hand side we shortly write

F( y) :=[ f ( y, |) : | # 0]

for y # Y and consider for S>0 and | # 0 the set-valued averages

FM(S, y, |)={1
S |

S

0
f ( y, u(t)) dt : u( } ) # U|

M= .
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By Caratheodory's theorem the set-valued averages converge, in the Hausdorff
sense, to the closed convex hull of the right-hand side

conv F( y)= lim
S � �

FM(S, y, |).

In order to obtain an approximation rate, we make use of a generalized
version of Caratheodory's theorem.

Lemma 2.2. For all v # conv F( y) and v0 # F( y) there are
v1 , ..., vn # F(x) and *0 , ..., *n # [0, 1] with �n

i=0 * i=1, such that

v= :
n

i=0

*ivi .

Proof. This follows from a more general statement in [1]. K

We recall the definition of the Hausdorff metric for compact subsets
A, B/Rn. We set Ae :=[x # Rn : dist(x, A)�e]. Then the Hausdorff
metric can be written as

dH(A, B) :=inf[e>0 : A/Be and B/Ae].

Proposition 2.3. Let M>0 and y # Y. For all | # 0 and all S>0 we
can estimate

dH(conv F( y), FM(S, y, |))�
2PTn
SM

.

Proof. Denoting by Ba(0) the closed ball with center 0 # Rn and radius
a�0 we obviously have for all | # 0:

FM(S, y, |)/conv F( y)+B(2PTn)�(SM)(0).

For the converse estimate, let v # conv F( y). By Lemma 2.2, for |0 :=|,
there are |1 , ..., |n # 0 and *0 , ..., *n # [0, 1] with �n

i=0 *i=1, such that

v= :
n

i=0

*i f (x, |i).
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For S # (0, (nT )�M] the required estimate obviously is valid. For
S>(nT )�M we divide the interval [0, S] into 2n+1 subintervals [0, +0],
[+0 , T�M++0], [T�M++0 , T�M++0++1], ..., [nT�M++0+ } } } ++n&1 ,
nT�M++0+ } } } ++n] with

+i :=*i (S&nT�M).

According to Assumption 2.1 we choose a control u( } ) # U|
M such that

u(t)=|i for t # _iT�M+ :
i&1

k=0

+k , iT�M+ :
i

k=0

+k & .

Then we can write

v(S) :=
1
S |

S

0
f ( y, u(t)) dt

=
1
S \(S&nT�M) :

n

i=0

*i f ( y, |i)+(nT�M) v*+
=

1
S

((S&nT�M) v+(nT�M) v*),

where v* # conv F( y). Thus we found an element v(S) # FM(S, y, |) with

&v(S)&v&�
2PnT
SM

and the proof is finished. K

Theorem 2.4. Let M>0 and H�0. For any measurable control
u( } ) # U and any | # 0 there is a Lipschitz control w( } ) # U|

M such that

max
t # [0, H]

&x(t, x, w( } ))&x(t, x, u( } ))&�
1

- M
4eLH

- (PLH+P) HPTn.

Proof. We write shortly x(t)=x(t, x, u( } )). For an SM>0 (to be
specified later) we divide the interval [0, H] into subintervals [tk , tk+1],
for k=0, ..., [(HM)�SM], of lenght tk+1&tk=SM �M, that is tk=(kSM)�M.
Then we have

x(tk+1)=x(tk)+|
tk+1

tk

f (x(t), u(t)) dt.
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We define a sequence in Rn by x0=x and

xk+1=xk+|
tk+1

tk

f (xk , u(t)) dt.

Then we obtain

&xk&x(tk)&�
SM

M
PLHeLH.

To this end we observe that

&xk+1&x(tk+1)&�&xk&x(tk)&+
SM

M
L \SM

M
P+&xk&x(tk)&+

=&xk&x(tk)& \1+
LSM

M ++
S 2

M

M2 LP.

We conclude that

&xk&x(tk)&�
S 2

M

M2 LP :
k&1

i=0
\1+

LSM

M +
i

�
S 2

M

M2 LP _HM
SM &\1+

LSM

M +
HM�SM

�
SM

M
PLHeLH.

Alternatively we can write with vk := M
SM

� tk+1
tk

f (xk , u(t)) dt # conv F(xk):

xk+1=xk+
SM

M
vk .

We define a new sequence in Rn by y0=x and

yk+1= yk+
SM

M
wk ,

where wk # FM(SM�M, yk , |k) is chosen such that

&vk&wk&�L &xk& yk&+
2PTn
SM

.
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Then we can estimate

&yk+1&xk+1&�\1+
LSM

M + &yk&xk&+
SM

M
2PTn
SM

.

Hence

&yk&xk&�
SM

M
2PTn
SM

:
k&1

i=0
\1+

LSM

M +
i

�H
2PTn
SM

eLH.

On the other hand the wk # FM(SM �M, yk , |k) are produced by Lipschitz
controls uk( } ) # UM with u0(0)=|0 :=| and uk({k)=|k :=uk&1({k).
These controls define a Lipschitz control w( } ) # U|

M , at least for t # [0, H].
Let t [ y(t) :=x(t, x, w( } )) be the corresponding trajectory. Then we can
estimate as above

&y(tk)& yk &�
SM

M
PLHeLH.

Considering that

max[&x(t)&x(tk)&, &y(t)& y(tk)&]�
SM

M
P,

for t # [tk , tk+1], we finally obtain

&y(t)&x(t)&�2
SM

M
PLHeLH+2

SM

M
P+H

2PTn
SM

eLH

�2eLH \SM

M
(PLH+P)+

1
SM

HPTn+
�4eLH 1

- M
- (PLH+P) HPTn,

where the last inequality is obtained by setting

SM :=
- MHPT

- PLH+P

and the proof is finished. K
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3. AN EXAMPLE

We present an example that shows that the approximation order
O(M&1�2), as M � �, stated in Theorem 2.4 is optimal. Consider the
system in R2

d
dt \

x1(t)
x2(t)+=\ f1(u1(t))

f2(u2(t))+ ,

where the control range 0/R2 is a union 0=01 _ 02 _ 03 with

01 :=[&2, &1]_[0, 1], 02 :=[&1, 1]_[1],

03 :=[1, 2]_[0, 1].

Hence, for a fixed control value (|1 , |2) # 0, the corresponding vector
field is constant. We define

|1+1 for |1 # [&2, &1]

f1(|1) :={0 for |1 # [&1, 1], f2(|2) :=|2 .

|1&1 for |1 # [1, 2]

For simplicity we choose the initial state x=(x1 , x2)T=(0, 0)T # R2 and
the time horizon [0, H]=[0, 1].

Remark 3.1. In the sequel we make use of a more restrictive version of
the Landau symbol O. For * # R we say that a function M [ h(M) # R is
of order O� (M*), as M � �, if there are two constants 0<c1�c2 such that
for M>0 large enough the estimates c1M�|h(M)| and |h(M)|�c2 M are
valid. In contrast, the standard Landau symbol O requires the second
estimate only.

Now we assume that there is a }>1�2 such that

sup
u( } ) # U

( inf
w( } ) # UM

( max
t # [0, H]

&x(t, x, u( } ))&x(t, x, w( } ))&))=O(M&}). (2)

For M>0 and = # (0, }) we define a periodic measurable control
t [ u(t)=(u1(t), u2(t))T (with period 4M&}+=) by

u1(t) :={ 2
&2

for t # [M&}+=, 3M &}+=)
for t # [3M &}+=, 5M&}+=)

, u2(t) :=0 for t # R.

This control produces a periodic trajectory t [ x(t; x, u( } )) with x2(t; x, u( } ))
#0 and t [ x1(t; x, u( } )) periodically oscillating between the values
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&M&}+= and +M &}+=. Since =>0, for any c>0, we have 2M&}+=>
cM&} for M>0 large enough. Hence, for M>0 large enough, the x1 -tra-
jectory only can be approximated by Lipschitz controls w( } )=
(w1( } ), w2( } )) # UM if t [ w1(t) changes the sign. The number of changes is
of order O� (M}&=), as M � �. Notice that any change of sign causes a
vertical deviation of order O� (M&1), as M � �, since the Lipschitz control
has to pass through 02 . So, for any = # (0, }), we collect an overall vertical
deviation of order O� (M&1+}&=), as M � �, which is a contradiction to (2).

4. THE NONLINEAR CONVEX CASE

The previous example shows that, even for convex right-hand sides
F( y)=[ f ( y, |) : | # 0], the approximation order O(M&1�2), as M � �,
is optimal. Indeed, the velocity set for this example can be easily calculated:
F( y)=[&1, 1]_[0, 1].

In order to achieve better approximation rates we have to impose some
additional conditions on the mechanism that prescribes how control values
| # 0 are related to vector fields f ( } , |). Notice that the map

:: 0 � C(Y, Rn), | [ f ( } , |)

is continuous, if we equip C(Y, Rn) with the uniform topology.

Assumption 4.1.

v The set of all admissible vector fields on Y, :(0), is convex.

v There is a Lipschitz continuous map ;: :(0) � 0 such that ; b :=
id0 . We denote by C�0 its Lipschitz constant.

Assumption 4.1 is stronger than Assumption 2.1. To see this, we just
have to use the convexity of the set of vector fields and the Lipschitz
continuity of ;. Then we can set T :=2PC and obtain the condition in
Assumption 2.1.

Remark 4.2. Assumption 4.1 is satisfied for control affine systems given
by f (x, (|1 , ..., |m)) :=f0(x)+�m

i=1 |ig i(x) if the control range 0/Rm is
convex and if the vector fields g1 , ..., gm are linearly independent.

For K>0 and | # 0 we consider the backward averaged system

z* (t)=K |
1�K

0
f (z(t), u(t&s)) ds, z(0)=x, u(t) # 0, (3)

where we set u(t) :=| for t # (&�, 0).
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Lemma 4.3. Let t [ x(t) be the trajectory of (1) and t [ z(t) the trajec-
tory of (3), both obtained with the same control u( } ) # U and with the same
initial value x # Rn. Then for all H�0 we can estimate

max
t # [0, H]

&x(t)&z(t)&�
1
K

(3PLH+2P+HP) eLH.

Proof. We divide the interval [0, H] into subintervals [tk , tk+1], for
k=0, ..., [HK], of lenght tk+1&tk=1�K, that is tk=k�K. We additionally
set t&1 := &1�K. We define a sequence in Rn by x0=x and

xk+1=xk+|
tk+1

tk

f (xk , u(t)) dt.

Then we obtain as in the proof of Theorem 2.4

&x(tk)&xk&�
1
K

PLHeLH.

The solution of (3) fulfils

z(tk+1)=z(tk)+|
tk+1

tk

K |
1�K

0
f (z(t), u(t&s)) ds dt.

We define a sequence in Rn by z0 :=x and

zk+1 :=zk+|
tk+1

tk

K |
1�K

0
f (zk , u(t&s)) ds dt.

In the same way as in the proof of Theorem 2.4 we obtain the estimate

&z(tk)&zk&�
1
K

PLHeLH.

With the transformation r :=t&s and diagonal integration we can write

zk+1=zk+|
tk

tk&1

K(r&tk&1) f (zk , u(r)) dr+|
tk+1

tk

K(tk+1&r) f (zk , u(r)) dr.
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Now, we estimate the distance 2k :=&xk&zk &. To this end we write

zk+1=z0+ :
k

i=0
|

ti+1

ti

f (zi , u(r)) dr

+|
tk+1

tk

K(tk+1+r) f (zk , u(r)) dr&|
t0

t&1

K(r&t&1) f (z0 , u(r)) dr

+ :
k

i=0
\|

ti+1

ti

K(r&t i) f (zi+1 , u(r)) dr&|
ti+1

ti

K(r&ti) f (zi , u(r)) dr+ .

We obtain 21� 2P
K and for all k=1, ..., [KH]:

2k+1�2k+
L
K

2k+
(L+1) P

K2 L

�2k \1+
L
K++

(L+1) P
K2 .

We conclude that

2k+1�
2P
K \1+

L
K+

k

+
(L+1) P

K2 :
k&1

i=0 \1+
L
K+

i

.

Hence we obtain

2k+1�
2P
K

eLH+
(L+1) PH

K
eLH

and the proof is finished. K

Theorem 4.4. Let M>0 and H�0. For any measurable control
u( } ) # U and any | # 0 there is a Lipschitz control w( } ) # U|

M such that

max
t # [0, H]

&x(t, x, w( } ))&x(t, x, u( } ))&�
1
M

2PC(3PLH+2P+HP) eLH.

Proof. According to Lemma 4.3 we have

max
t # [0, H]

&x(t)&z(t)&�
1
K

(3PLH+2P+HP) eLH. (4)
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for solutions of the system (3). On the other hand the map

#: [0, H] � C(Y, Rn), t [ K |
1�K

0
f ( } , u(t&s)) ds

obviously is Lipschitz continuous with Lipschitz constant 2KP�0. By
Assumption 4.1 we even have #(t) # :(0) and for all t # [0, H] there is a
unique |=(; b #)(t) # 0 with

K |
1�K

0
f ( } , u(t&s)) ds= f ( } , |).

The composition map

; b # : [0, H] � 0

is Lipschitz continuous with Lipschitz constant 2KPC�0. Furthermore we
can define a Lipschitz control w(t) :=(; b #)(t). Then w(0)=| and t [ w(t)
produces the trajectory of (3). Hence, for PC>0, the claim follows by set-
ting K :=M�(2PC) in (4). For PC=0, the class of admissible vector fields
is single-valued and nothing is to show. K
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